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Abstract

In this work some issues concerning the prediction capabilities of the global transfer direct transfer (GTDT)

method when blocking transmission paths in a mechanical system are addressed. The formalism of the GTDT

approach, which requires no force determination, is first applied to a discrete system made of a combination of springs,

dampers and masses. Then, a path blocking analysis is carried out for the cases of setting the displacement of any

mass to zero and of removing some system elements. Differences with the more standard force transmission path analysis

(TPA) are outlined.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There exist different options to try to reduce the vibration or acoustic pressure levels in a given
vibroacoustical system. Think, for example, in the case of an airplane’s cabin where the noise spectrum at the
pilot location is to be diminished. If it was possible to measure the operational forces acting on the airplane,
force transmission path analysis (TPA) methods could become a very useful tool because they could serve to
rank the influence of the various paths to the interior noise (see e.g., Refs. [1–8]). Then, one could calculate
how the suppression or reduction of a given force will decrease the interior noise. On the other hand, if it was
not possible to modify the forces acting on the airplane, an alternative to reduce the interior noise would be to
diminish the radiation of the cabin panels, for instance, by modifying their physical properties. In such a case,
it would prove very interesting to factorise the noise at the pilot location in terms of the contributions of the
various panel vibrations. If one was able to determine how a modification in the panel characteristics may
diminish its overall level of vibration, the factorisation will serve to calculate the consequent reduction of
interior noise level. This type of factorisation among responses can be found, for instance, by means of the
global transfer direct transfer (GTDT) TPA method (see e.g., Refs. [2,9–13]) or, alternatively, by means of
path blocking (covering) techniques (see e.g., Ref. [14]).
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The force TPA and GTDT approaches can be classified as two-step methods because they involve two sets
of measurements: the first set is carried out with the system stationary and serves to characterise it, while the
second set of measurements is performed with the system running under operational conditions. However, and
as a general tendency, it could be roughly said that the GTDT method offers much simpler sets of
measurements because no force determination is required, although it yields more intricate data postprocess.
As opposite, the force TPA method accounts for more cumbersome measurements but easier postprocess. This
point will be discussed to some extent in this paper. Finally, it is worthwhile to mention that alternative
approaches to transfer path analysis, or modifications to the force TPA and GTDT methods, exist. For
instance, one-step methods aiming at finding force and/or response transmission paths solely from operational
force and response measurements (see e.g., Refs. [15–18]). Further literature on these and related subjects can
be found in the insofar cited references, among others.

Recently, a detailed analysis of some discrete mechanical systems consisting of springs, dampers and masses
using several force transmission path methods has been carried out [1]. In this paper, the formalism of the
GTDT approach is analytically applied to one of these systems. On one hand, some points concerning the
possible predictive capabilities of the method when blocking a transmission path will be addressed. Two cases
will be considered, path blocking by setting to zero the displacement of a system mass and path blocking by
means of removing some system elements. As quoted in Ref. [1], very few works and information on path
blocking approaches are available. On the other hand, the simplicity of the example also proves very useful to
explain pedagogically some of the key ideas of the GTDT method, as well as to complement some previous
work on it. Concerning the former, it will be shown that the factorisation among responses can be performed
using easily measurable quantities, such as the transfer functions among the displacements of the masses, or
the operational displacement vector. Measuring these quantities does not require the blocking of any mass or
to remove any part of the system, as happens in the force TPA approach [1]. Concerning the second aim, the
connectivity role of the so-called direct transfer matrix and some factorisation issues will be made apparent for
the considered discrete mechanical system. Transmission paths will be identified with direct transfer functions
rather than with a set of physical elements, in the line of what is done in Refs. [2,12,13].

Some of the above issues were previously analysed for some continuum systems involving, for instance, the
bending wave propagation in an Euler–Bernouilli beam or the free field acoustic wave propagation in a two-
dimensional space (see Refs. [12,13]). Although using a different terminology, the role of the direct transfer
function matrix eigenvalues and eigenvectors when coupling plates by means of springs was addressed in
Ref. [11]. On the other hand, an application of the GTDT approach to discrete systems was performed in
Ref. [13] considering the discretisation of the Helmholtz equation by means of several finite element and finite
difference numerical schemes. Instead, and as previously mentioned, a more standard discrete mechanical
system has been used in this work.

The paper is organised as follows. In Section 2, the mechanical system to be studied, the problem to be
solved and some measurable quantities that can be easily obtained in practical industrial cases are presented.
These quantities will be the starting point of the analysis. In Section 3, it is shown how to obtain the direct
transfer functions among the displacements of the masses from these easily measurable quantities. An
alternative way to obtain direct transfer functions for the herein developed analytic case is also provided. In
Section 4, the factorisation of any displacement of a mass in terms of the displacement due to the external
force directly acting on it, plus the contributions from the displacements of the remaining masses is presented.
Some considerations on the predictive capabilities of the method when blocking some paths in the original
analysed system are given in Section 5. In Section 6, a numerical example is carried out to elucidate some of
the previously exposed concepts. Conclusions are finally drawn in Section 7.
2. Problem statement

2.1. Equations of motion

Consider a 4 dof (degrees of freedom) discrete mechanical system consisting of two masses m1 and m4,
respectively connected to ground by springs and dampers characterised by ðkg1; cg1Þ and ðkg4; cg4Þ. Masses m1
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Fig. 1. Analysed 4 dof mechanical system.

O. Guasch / Journal of Sound and Vibration 321 (2009) 854–874856
and m4 are also connected one to another by means of two parallel configurations of springs ðk12; k24; k13; k34Þ,
dampers ðc12; c24; c13; c34Þ and masses ðm2;m3Þ according to the distribution in Fig. 1.

Assuming a time harmonic behaviour of radian frequency o, the equation of motion of the system in the
frequency domain is given by

ðK� o2MÞX ¼ F, (1)

where X ¼ ðX 1;X 2;X 3;X 4Þ
> is the vector of displacements of the masses and F ¼ ðF 1;F2;F3;F4Þ

> is the
vector containing the forces acting on them. M is the mass matrix given by

M:¼diagðm1;m2;m3;m4Þ, (2)

while K is the complex stiffness matrix built from the storage stiffness, K, and the viscous damping, C, matrices

K:¼Kþ ioC. (3)

K is explicitly given by

K ¼

k1 �k12 �k13 0

�k12 k2 0 �k24

�k13 0 k3 �k34

0 �k24 �k34 k4

0BBBB@
1CCCCA (4)

with k1:¼k12 þ k13 þ kg1; k4:¼k24 þ k34 þ kg4; k2:¼k12 þ k24 and k3:¼k13 þ k34.
A dynamic stiffness matrix ZSPR can be defined by

ZSPR:¼K� o2M, (5)
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so that the equation of motion, Eq. (1), can be rewritten as

ZSPRX ¼ F. (6)

Note that while K, C and M are constant matrices, K, ZSPR, X and F are frequency dependent quantities,
although this is not shown explicitly in the herein used notation.

2.2. Easily measurable quantities: the global transfer matrix, TG and the operational displacement vector, Xop

In a practical industrial case, involving a complex system, the dynamic stiffness matrix will not be known a
priori. However, its inverse (dynamic compliance matrix) can be determined by means of experiments. Let us
denote it by HSPR:¼ðZSPRÞ

�1. It then follows from Eq. (6) that

X ¼ HSPRF. (7)

Equations analogous to Eq. (7) are at the basis of force TPA methods (see e.g., Refs. [1–8] and references
therein). However, and as mentioned in the Introduction, one of the aims in this paper is to avoid the explicit
use of forces. Instead of working with HSPR, it is then expected to just work with responses (displacements,
velocities, accelerations, acoustic pressure, etc.) (see Refs. [12,13]). This will avoid the necessity to perform
demounting tests and to measure, or indirectly determine, the operational forces, which may be rather
complicate in many cases.

An easily measurable matrix that will serve the above purposes is the global transfer matrix, or
transmissibility matrix, TG. The global transfer function between two masses mi and mj is given by the quotient
between the displacement of mj and the displacement of mi, when a unit force Fi is applied at mi and there is
no restriction on the displacements of the remaining masses. Hence,

TG
ij ¼ X j=X i. (8)

Note that Eq. (8) coincides with the usual concept of transfer function, the adjective global arising from
the fact that the measured displacements X i and X j are not only due to the response of masses mi, mj to F i,
but to the response of the whole system to Fi. Note also that TG

ij in Eq. (8) also stands for a velocity/velocity
or acceleration/acceleration transfer function given that a cancelled factor qn

t2ðioÞ
n, with n ¼ 1; 2,

would appear both in the numerator and denominator of Eq. (8) (qn
t stands for the n-th-order partial time

derivative).
As an analytical example is being studied, it is possible to obtain TG from HSPR because TG

ij ¼ X j=X i ¼

ðX j=F iÞ=ðX i=FiÞ ¼ HSPR
ji =HSPR

ii (this relation is not true for measured force and global transfer functions).
Then, TG for the mechanical system in Fig. 1 becomes

TG ¼

1 HSPR
21 =HSPR

11 HSPR
31 =HSPR

11 HSPR
41 =HSPR

11

HSPR
12 =HSPR

22 1 HSPR
32 =HSPR

22 HSPR
42 =HSPR

22

HSPR
13 =HSPR

33 HSPR
23 =HSPR

33 1 HSPR
43 =HSPR

33

HSPR
14 =HSPR

44 HSPR
24 =HSPR

44 HSPR
34 =HSPR

44 1

0BBBB@
1CCCCA. (9)

The terms HSPR
ij in Eq. (9) are provided in Appendix A.

Assume now that the system is working under certain operational conditions i.e., an operational force
Fop ¼ ðF

op
1 ;F

op
2 ;F

op
3 ;F

op
4 Þ
> is acting on the system leading to the displacements Xop ¼ ðX

op
1 ;X

op
2 ;X

op
3 ;X

op
4 Þ
>.

Operational forces are rather difficult quantities to obtain in practice, while it is straightforward to measure
the operational system responses. Consequently, the sole use of Xop is desired in the herein presented
approach.

The type of problems that are expected to be solved following the GTDT formulation can be summarised in
the next two questions for the mechanical system in Fig. 1.
�
 With the only use of easily measurable quantities such as the global transfer matrix, TG, and the operational
displacement vector, Xop, is it possible to factorise the displacement, X

op
i , of any mass, mi, in terms of the

displacements of the remaining masses and the displacement solely due to the external force acting on mi?
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�
 From the knowledge of the global transfer matrix, TG, and the operational displacement vector, Xop, is it
possible to predict the new operational displacement vector when some transmission paths in the original
system are somehow blocked?

It will be shown in subsequent sections that the application of the GTDT method of TPA gives an affirmative
answer to the first question. In what concerns the second question, it will be shown that the answer can be
affirmative in some cases (when the modification consists of blocking the displacement of a mass) but in others
some further measurements will be required (when the modification involves changing the properties or
removing some spring and damper elements).

3. The direct transfer matrix, TD

3.1. Obtaining TD from TG

In order to obtain the desired displacement factorisation, it is necessary to introduce the concept of direct

transfer function. Its definition is next stated for the particular case addressed in this paper (see Refs. [2,12] for
general definitions). The direct transfer function, TD

ij between two masses mi and mj, with iaj, is given by the
displacement of mj divided by the displacement of mi, when a unit force acts on mi and all remaining
displacements of masses are kept blocked, i.e., TD

ij :¼X j=X i; with X k ¼ 0; 8kai; j. On the other hand, the
direct transfer function from a mass mi to itself, TD

ii :¼X 0i=X ext
i , is given by the quotient between the

displacement X 0i of mi when a unit force is applied on it and the displacements of all remaining masses
are blocked ðX k ¼ 0; 8kaiÞ, and the displacement X ext

i of mi when a unit force is applied on it, and there is no
restriction on the displacements of all other masses.

Considering all direct transfer functions among masses, the direct transfer matrix, TD, can be build. This
matrix can be obtained from the measurable global transfer function, TG. It follows that (see Refs. [2,12,13])

1=TD
ii ¼ ½T

G��1ii , (10a)

TD
ij =TD

jj ¼ �½T
G��1ij . (10b)

In almost any case of practical interest, the inversion of the matrix TG has to be carried out. This may pose
some numerical stability problems that can be addressed employing specific regularisation and/or resampling
techniques [7,8,19,20]. Even when dealing with analytical examples, the cumbersome work of inverting TG has
usually to be performed [12,13]. Fortunately, this is not the case for the mechanical system presented here
because in this particular case ZSPR is known a priori. In fact, TG can be rewritten as

TG ¼ diagð1=HSPR
11 ; 1=HSPR

22 ; 1=HSPR
33 ; 1=HSPR

44 ÞH
SPR, (11)

where the symmetry of HSPR has been used (see Appendix A). The inverse ½TG��1 can then be easily
computed as

½TG��1 ¼ ½HSPR��1 diagð1=HSPR
11 ; 1=HSPR

22 ; 1=HSPR
33 ; 1=HSPR

44 Þ
�1

¼ ZSPR diagðHSPR
11 ;HSPR

22 ;HSPR
33 ;HSPR

44 Þ (12)

given that all terms in the second line of Eq. (12) are already known. From Eqs. (5), (A.1)–(A.4), (A.11), (10a)
and (12) it follows that the diagonal elements of the direct transfer matrix, TD, are given by

TD
ii ¼ 1=½ðki � o2miÞH

SPR
ii � 8i ¼ 1 . . . 4. (13)

On the other hand, from Eqs. (5), (A.5)–(A.10), (10b), (12) and (13) the off-diagonal elements of TD

(TD
ij ; 8i; j ¼ 1 . . . 4; iaj) become

TD
ij ¼

kij

ðkj � o2mjÞ
for ði; jÞafð1; 4Þ; ð4; 1Þ; ð2; 3Þ; ð3; 2Þg, (14a)

TD
14 ¼ TD

41 ¼ TD
23 ¼ TD

32 ¼ 0 (14b)
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with kij � kji. The key point of matrix TD is the connectivity or path information it contains. For instance,
TD

14 ¼ 0 expresses the logical fact that m4 cannot move when m1 is vibrating if m2 and m3 are kept fixed i.e.,
X 2 ¼ X 3 ¼ 0 (see Fig. 1). Analogously, TD

32 ¼ 0 expresses the fact that m2 will not move when m3 is doing so,
if m1 and m4 remain blocked. Further considerations on the concepts of transmission path and connectivity
are provided in Appendix B.

It should be noticed that the connectivity or path information contained in TD was already available in the
equation of motion, Eq. (6), characterised by matrix ZSPR ðTD

ij ¼ �TD
jj Z

SPR
ij HSPR

jj Þ. However, and as
previously pointed out, ZSPR will not be known a priori in most practical cases. Moreover, if it is desired to
obtain ZSPR by means of experiments (as in some force TPA approaches) the difficulty of having to block the
masses to do so and to demount several parts of the system has to be faced [1,3,4]). On the contrary, using the
above procedure the connectivity or path information contained in TD and ZSPR is obtained from the simply
measurable global transfer function, TG.
3.2. An alternative procedure to obtain TD

The direct transfer functions in Eqs. (13) and (14) can be alternatively obtained for the present analytical
example solving the appropriate equations of motion according to the TD

ij and TD
ii definitions.

First consider the off-diagonal elements of TD and choose an arbitrary element such as TD
12, i.e., the direct

transfer function between the m1 displacement and the m2 displacement. Remember that, by definition, TD
12

(from 1 to 2) stands for the displacement of m2 divided by the displacement of m1, when a unit force acts on m1

and all remaining displacements of masses are blocked. This will correspond to suppressing rows f3; 4g, as well
as columns f3; 4g, in Eq. (6) and then solving for X ¼ ðX 1;X 2Þ

> and F ¼ ð1; 0Þ>. This yields the reduced system
of equations:

k1 � o2m1 �k12

�k12 k2 � o2m2

 !
X 1

X 2

 !
¼

1

0

� �
(15)

with solution

X 1 ¼
ðk2 � o2m2Þ

ðk1 � o2m1Þðk2 � o2m2Þ � k
2

12

, (16a)

X 2 ¼
k12

ðk1 � o2m1Þðk2 � o2m2Þ � k
2

12

. (16b)

The direct transfer function is then given by TD
12 ¼ X 2=X 1, from which the first expression in Eq. (14a) for

ði; jÞ ¼ ð1; 2Þ is recovered.
All the remaining direct transfer functions in Eq. (14) can be easily recovered following the above

procedure. For instance, to find the element TD
34 simply remove rows and columns f1; 2g in Eq. (6) and then

solve the resulting system for X ¼ ðX 3;X 4Þ
> and F ¼ ð1; 0Þ>. To find the element TD

42, it is only necessary to
eliminate rows and columns f1; 3g in Eq. (6) and then solve for X ¼ ðX 2;X 4Þ

>, F ¼ ð0; 1Þ> and so on.
The diagonal terms of TD in Eq. (13) can be recovered in a similar way. Pay attention, for instance, to the

TD
11 element. According to the definition of the direct transfer function from a subsystem to itself, TD

11 is the
quotient between the displacement of m1, when a unit force is applied on it and the displacements of all
remaining masses are fixed ðX i ¼ 0; 8ia1Þ, and the displacement of m1 when a unit force is applied on it and
there is no restriction on the displacements of other masses. Denoting the vector displacement in the first
situation by X0 and the vector displacement in the second situation by Xext, X0 can be found by suppressing
rows and columns f2; 3; 4g in Eq. (6), which yields the immediate solution

X 01 ¼
1

ðk1 � o2m1Þ
. (17)
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On the other hand, Xext can be found from the solution of Eq. (6) with X � Xext ¼ ðX ext
1 ;X ext

2 ;X ext
3 ;X ext

4 Þ
> and

F ¼ ð1; 0; 0; 0Þ>. Given that HSPR:¼ðZSPRÞ
�1, the solution becomes

Xext ¼ ðHSPR
11 ;HSPR

21 ;HSPR
31 ;HSPR

41 Þ
>. (18)

The direct transfer function is then given by TD
11 ¼ X 01=X ext

1 , from which the result already found in Eq. (13)
for i ¼ 1 is recovered. The remaining transfer functions TD

ii ; 8ia1; can be derived straightforwardly in a
similar way.

4. Factorisation under operational conditions

4.1. Displacement of masses coherent factorisation

In the previous section it has been shown how the direct transfer matrix, TD, can be obtained from the
measurable global transfer matrix, TG. It will be next shown how to use TD to factorise the displacement of
any mass in terms of the displacement due to the force acting on it plus the displacements due to other
subsystem contributions. To do so, suppose that an operational force Fop ¼ ðF

op
1 ;F

op
2 ;F

op
3 ;F

op
4 Þ
> is applied to

the system resulting into the displacements Xop ¼ ðX
op
1 ;X

op
2 ;X

op
3 ;X

op
4 Þ
>. It can then be proved that the

following factorisation holds [2,12,13]:

Xop ¼ ðdevTDÞ
>Xop þ KDXop;ext, (19)

where devTD stands for a matrix containing the off-diagonal elements of TD, (devTD
ij :¼TD

ij ð1� dijÞ), KD

contains the diagonal terms of TD ðLD
ij :¼TD

ij dijÞ and Xop;ext is the operational external displacement vector
(dij stands for Kronecker’s delta). The vector Xop;ext contains the displacement of each mass that is solely due
to the external force acting on it (not to forces acting on the remaining masses). Obviously, Xop;ext cannot be
directly measured but it can be obtained from the measurable quantities TG and Xop,

Xop;ext ¼ ½ðTGÞ
>
��1Xop. (20)

Consequently, the decomposition in Eq. (19) has been obtained with the sole use of the global transfer matrix
TG and the operational displacement vector Xop.

For an easier comprehension of the meaning of Eq. (19), it will be expanded for a particular mass, e.g., m1.
This yields

X
op
1 ¼ TD

21X
op
2 þ TD

31X
op
3 þ TD

11X
op;ext
1

¼ TD
21X

op
2 þ TD

31X
op
3 þ X

0op
1 , (21)

where TD
41 ¼ 0 has been used. Eq. (21) states that the operational displacement of m1, X

op
1 , can be factorised as

a contribution due to the displacement of mass m2, plus a contribution due to the displacement of mass m3,
plus a contribution due to the displacement induced by the external force applied on m1. Note that X

op;ext
1

represents the displacement of m1 due to the external force acting on it plus the contributions of all other mass
responses to this force. Hence, X

0op
1 ¼ TD

11X
op;ext
1 represents the fraction of X

op;ext
1 that is only due to the

former (see e.g., Refs. [12,13]). Obviously, there is no contribution from m4 because m1 and m4 are not directly
connected. The influence of the m4 displacement onto the displacement of m1 takes place through m2 and m3.

The type of factorisation among responses given by Eq. (19) can be obtained experimentally in industrial
applications using a covering (path blocking) technique (see e.g., Ref. [14]) to obtain the direct transfer matrix.
For instance, in the case of the airplane’s cabin example mentioned in the Introduction, the various panel
vibration/vibration direct transfer functions as well as the direct transfer functions from the panel vibrations
to the acoustic pressure at the pilot’s location can be found by completely covering all cabin panels and then
uncovering them by pairs to obtain TD. Once operational data have been measured, a factorisation of Eq. (19)
type can be performed to obtain the various panel contributions to interior noise in real operation conditions.
Unfortunately, this is a rather lengthy and cumbersome procedure that, in addition, becomes intrusive as it
may alter the original (non-covered) vibration of the cabin. This is so because covering requires the use of
heavy mass-loaded material, which is difficult to link to the panels without influencing their behaviour.
However, it has been shown from the herein presented discrete system, together with previous work on the
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subject [2,10,12,13], that it should be possible to obtain the same information of the covering approach,
without altering the structure vibration and using shorter and easier sets of measurements.

4.2. A brief comment on the energetic factorisation

For completeness, a brief comment will be made in this subsection concerning the displacement
factorisation in the energetic case. Suppose that every Fi in a general equation of motion, ZX ¼ F or X ¼ HF,
is of white noise type so that any pair ðFi;FjÞ is uncorrelated, i.e., hF

�
i F ji ¼ jFij

2dij. Here, the bracket denotes
an averaging over a frequency bandwidth, Do, so that for any function, y, its average becomes
hyi:¼1=Do

R
Do ydo and its modulus jyj:¼ð1=Do

R
Do y�ydoÞ1=2.

Any displacement in X ¼ HF can be decomposed as

X i ¼
XN

j¼1

HijF j. (22)

Multiplying X i by its complex conjugate, averaging over frequency and taking into account that forces are
uncorrelated yields

hX �i X ii ¼ jX ij
2 ¼

XN

j¼1

jHijj
2jFjj

2. (23)

An analogous procedure to the one developed in the previous sections for the coherent case can be
followed defining jTG

ij j
2:¼jHijj

2=jHiij
2 to arrive at a decomposition similar to the ones in Eqs. (19)–(21) for the

energetic approach

jX
op
i j

2 ¼
XN

jai

jTD
ji j

2jX
op
j j

2 þ jX
0op
i j

2. (24)

The factorisations in Eqs. (23) and (24) are commonly used for problems in the mid-high frequency range.
5. Analytic analysis of path blocking

5.1. Blocking the displacement of a mass

Once having a factorisation like Eq. (19), one may wonder about its usefulness. The first obvious answer is
that it can serve to locate vibration and/or acoustic problems in a mechanical system. Imagine, for instance,
that the factor TD

21X
op
2 in Eq. (21) largely exceeds the other contributions to the operational displacement of

m1, X
op
1 . Then, it could be conjectured that by setting TD

21X
op
2 ¼ 0 the displacement of m1 should diminish

considerably. There are two options to do so, either by setting X
op
2 ¼ 0 or by making TD

21 ¼ 0. The first
possibility corresponds to blocking the composed path (see Appendix B for definition) connecting m1 and m4

by means of blocking the displacement of mass m2. The second possibility corresponds to blocking the
elemental path (see Appendix B for definition) linking m2 and m1. The first case will be analysed in this
subsection and the second case in the following one.

In the case of blocking the displacement of a mass, the GTDT method retains full prediction power in the
sense that if one is able to compute the new system direct transfer matrix, eTD, resulting from this blocking,
then the new system operational displacements, eXop, can be readily obtained (note that a tilde will be used
hereafter to differentiate the new system variables from the original system ones). This can be done in the
following way.

The first step consists in building the matrix eTD. This is quite a straightforward task for the herein analysed

4 dof mechanical system. All eTD

ij involving m2 will automatically vanish because m2 cannot be excited to

produce any other displacement ð eTD

2j ¼ 0; 8jÞ and the excitation of any mass will produce no response on

m2 ð eTD

i2 ¼ 0; 8iÞ. Hence, blocking m2 logically yields a reduced 3 dof system (see Fig. 2). On the other hand,
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Fig. 2. Blocking of paths: blocking mass m2.
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note that in accordance with the definition of direct transfer function, the remaining direct transfer functions
will not change as they do not involve m2, i.e.,

eTD

ij ¼ TD
ij 8i ¼ 1; 3; 4; j ¼ 1; 3; 4; iaj. (25)

Consequently, it only becomes necessary to compute the direct transfer functions, eTD

ii , to obtain the new

matrix eTD. Remember that eTD

ii ¼
eX 0i= eX ext

i . Again, taking into account the TD
ii definition it follows thateX 0i ¼ X 0i (this will be a crucial point). This is so because X 0i represents the displacement of mass mi when mi is

excited and all remaining masses mj ; 8jai; are blocked, while eX 0i represents the same for the new system
where, in particular, m2 is already blocked. Hence, both quantities are identical and it is only necessary to

compute eX ext

i to obtain eTD

ii . The first term, eX ext

1 , corresponding to eTD

11 can be found solving the equations of

motion of the reduced system

k1 � o2m1 �k13 0

�k13 k3 � o2m3 �k34

0 �k34 k4 � o2m4

0B@
1CA X ext

1

X ext
3

X ext
4

0B@
1CA ¼ 1

0

0

0B@
1CA. (26)

Eq. (26) has the solution Xext ¼ ð eHSPR

11 ; eHSPR

21 ; eHSPR

31 Þ
> but eHSPR

11 (see Appendix A) is the only term we
will need in this case. Following the procedure in Section 3.2 and taking into account the above conside-
rations yields

eTD

11 ¼
eX 01eX ext

1

¼
X 1y

0eX ext

1

¼
1

ðk1 � o2m1Þ eHSPR

11

. (27)

To compute the remaining direct transfer functions from the displacement of a mass to itself, Eq. (26) is solved
with force vectors F ¼ ð0; 1; 0Þ> and F ¼ ð0; 0; 1Þ>. Proceeding in an analogous way to what has been done
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for eTD

11, the following expressions can be derived:

eTD

33 ¼
eX 03eX ext

3

¼
X 03eX ext

3

¼
1

ðk3 � o2m3Þ eHSPR

22

, (28a)

eTD

44 ¼
eX 04eX ext

4

¼
X 04eX ext

4

¼
1

ðk4 � o2m4Þ eHSPR

33

. (28b)

From Eqs. (25), (27), (28) and (A.12)–(A.15) all elements in the new system direct transfer matrix, eTD,
are available.

Once having eTD, it is possible to compute the new global transfer function matrix, eTG, using the following
equation corresponding to the inverse of the relations in Eq. (10) (see Refs. [12,13]),eTG ¼ �eKDðdev eTD � IÞ�1 (29)

with I standing for the identity matrix.
Next, use can be made of the abovementioned fact that eX 0i ¼ X 0i for the direct transfer functions, TD

ii . This is
an important relation because it allows to obtain the external operational displacements of the new system in
terms of the old ones

eXop;ext

i ¼
TD

iieTD

ii

X
op;ext
i 8i. (30)

Having computed eXop;ext, Eq. (20) can be reverted to obtain the operational displacement vector of the
new system eXop ¼ ðeTGÞ

>eXop;ext. (31)

Finally, from eTD, eXop;ext and eXop, a factorisation identical to Eq. (19) can be performed for the new
modified system eXop ¼ ðdev eTDÞ

>eXop þ eKDeXop;ext. (32)

It has then been checked that when modifying the original system by means of a mass blocking, it is possible to
obtain the same amount of information, Eqs. (31) and (32), for the new system than for the old one. This has
been done without the necessity of making any new measurement. Moreover, it is clear from the above
argumentation that this is a general result which can be applied to any mechanical system analysed by means

of the GTDT approach (the key point lies on the fact that eX 0i ¼ X 0i). Whenever modifications involve blocking

dof from the original system, full predictability can be achieved if one is able to compute the new system direct
transfer matrix.

5.2. Removing springs and dampers

The possibility of making TD
21X

op
2 ¼ 0 by blocking the elemental path from m1 to m4 is next considered. This

case corresponds to setting TD
21 ¼ 0. It follows from Eq. (14b) that it suffices to take k12 ¼ 0 ðk12 ¼ c12 ¼ 0Þ to

do so. Observe that this corresponds to the SF experimental disconnect option in Ref. [1], see Fig. 3.
The new direct transfer function matrix, bTD, can be easily found in this case by setting ðk12 ¼ 0Þ in Eqs. (13)

and (14) bTD ¼ TDðk12 ¼ 0Þ, (33)

where use has been made of a wide hat to distinguish this matrix from the blocked mass one, eTD (tilde), and
from the original one, TD. Note that according to the direct transfer function definition, when setting TD

21 ¼ 0
it could happen that some direct transfer functions involving m1 or m2 become modified. However, direct
transfer functions involving masses different from m1 or m2 will remain unaltered. Observe from Eq. (13) that

while bTD

34 ¼ TD
34 and bTD

43 ¼ TD
43, as expected, some other functions have changed bTD

31aTD
31 and bTD

42aTD
42.
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Fig. 3. Blocking of paths: removing spring k1S and damper c1S .
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In what concerns direct transfer functions, TD
ii , they all become modified since the response of the whole

system is involved in their denominator.
The procedure in the previous section shall be now followed. From bTD, the new global transfer function

matrix (Eq. (29)) can be computed

bTG ¼ �bKDðdev bTD � IÞ�1. (34)

Next, one has to obtain the new external operational displacement vector, bXop;ext. Unfortunately this turns out

to be more difficult in this situation than for the mass blocking case because now bX 0iaX 0i. This is so because bX 0i
and X 0i are measured with all remaining masses mj ; jai; blocked, but in this case the bX 0i measurement is done

with the configuration in Fig. 4a (k12 ¼ 0), while the X 0i measurement corresponds to Fig. 4b ðk12a0Þ.
However, there is still an option to retain full prediction power but at the price of using the diagonal terms of
the dynamic compliance matrix. From Eq. (11) it follows that

½ðTGÞ
>
��1 ¼ ½HSPR diagð1=HSPR

11 ; 1=HSPR
22 ; 1=HSPR

33 ; 1=HSPR
44 Þ�

�1

¼ diagðHSPR
11 ;HSPR

22 ;HSPR
33 ;HSPR

44 Þ½H
SPR��1 (35)

and from Eq. (20) and taking into account that Xop ¼ HSPRFop, the external operational displacement vector
of the original system, Xop;ext, can be rewritten as

Xop;ext ¼ diagðHSPR
11 ;HSPR

22 ;HSPR
33 ;HSPR

44 ÞF
op. (36)

Analogously, for the new modified system it follows that

bXop;ext
¼ diagð bHSPR

11 ; bHSPR

22 ; bHSPR

33 ; bHSPR

44 ÞF
op. (37)
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Fig. 4. (a) Configuration used to determine bX 01, (b) configuration used to determine X 01:
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Extracting Fop from Eq. (36) and inserting it in Eq. (37) allows to obtain the external operational displacement
vector of the new system in terms of the original one

bXop;ext ¼ diag
bHSPR

11

HSPR
11

;
bHSPR

22

HSPR
22

;
bHSPR

33

HSPR
33

;
bHSPR

44

HSPR
44

 !
Xop;ext. (38)

Finally, the new operational displacement vector and its factorisation corresponding to Eqs. (31) and (32) can
be found using Eq. (38) bXop ¼ ðbTGÞ

>bXop;ext, (39)

bXop ¼ ðdevbTDÞ
>bXop þ bKDbXop;ext. (40)

Hence, it has been shown that it is possible to retain full power prediction in this case but at the price of having
to obtain the diagonal terms of the system compliance matrix. This may still be an advantage when comparing
with the force TPA approach because no operational forces are to be measured and it is not necessary to
obtain the whole compliance matrix. On the other hand, the TPA approach can handle modifications in a
more easier way because it directly works with the external forces acting on the system.

5.3. Discussion

Whether to perform in practice a force TPA analysis or a GTDT factorisation may not only depend on the
type of desired results, but on many other factors such as the demounting possibilities of the analysed
machinery, the available time for measurements, etc. In any case, once the mechanical system under study has
been characterised by either one approach or the other, and a problem detected, the most difficult task
probably consists in computing the new modified system dynamic compliance matrix and the new direct
transfer matrix.

In the previous section, it has been shown how the latter can be done for the simple analytic 4 dof discrete
system, but in practical industrial cases things may be much more involved. However, let us perform some
rather speculative comments on the implementation of the GTDT approach in these situations, given that
occasionally, some simplifying hypotheses could be made leading to acceptable results. This could be the case,
specially when working in the mid-high frequency range. For instance, in the airplane cabin example referred
throughout the paper, it can be assumed that all cabin panels are independently mounted on a quite rigid
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structure. Changing the physical properties of one of the panels (e.g., a window) may result in a considerable
modification of the direct transfer function between the window vibration and the interior acoustic pressure.
However, these changes may affect to a much lesser extent the direct transfer functions among the window
vibration and its neighbour panels. Hence, it could be assumed that only one, or a few, direct transfer
functions change in this situation. This has seemed to be the case for some tested applications [21], although
these kind of approximations may strongly vary from one particular problem to another.

6. Numerical example

In what follows, a numerical experiment will be presented to elucidate some of the previously presented
concepts. The mass, stiffness and damping values used in the numerical computations are given in Table 1.
Throughout the simulations it has been considered that a constant external operational force is acting on m4

i.e., Fop ¼ ð0; 0; 0; 10Þ>. Results will be presented for the frequency range ½0 5�Hz.
In Fig. 5, the values 20 log10ðjT

G;D
ij jÞ have been plotted for some global and direct transfer functions

corresponding to the original mechanical system in Fig. 1. In Fig. 5a, TG
11 and TD

11 are shown. Logically
20 log10ðT

G
11Þ ¼ 0 because TG

11 ¼ 1, while TD
11 is a completely different shaped function. Fig. 5b contains the

transfer functions from m2 to m3. As these masses are not directly connected, TD
23 ¼ 0 and its logarithm is at

�1. On the contrary, TG
23 is a well-defined function. In Figs. 5c and d plots are given for 20 log10ðT

G;D
13 Þ and

20 log10ðT
G;D
42 Þ, which correspond to directly connected masses. Concerning the location of peaks and dips in

the global and direct transfer functions see the explanation in Ref. [12].
In Fig. 6, 10 times the logarithms of the squared moduli of various displacement factorisations according to

Eq. (19) are provided. Two clearly distinguishable zones can be detected in the displacement spectra of all
subplots: a first zone approximately ranging from 0 to 2Hz, where the resonant behaviour of the system
dominates, and a second non-resonant zone beyond 2Hz. The displacement, X

op
1 , of mass m1 is shown in

Fig. 6a. As there is no force acting on m1 and this mass is not directly connected to m4, there are only
contributions from masses m2, TD

21X
op
2 , and m3, TD

31X
op
3 . In the resonant zone both contributions alternate and

have a similar degree of influence to the overall X
op
1 displacement. Note also that the moduli of these

contributions can surpass the overall displacement modulus, which is given by the modulus of their
displacement coherent summation (the system relative phases have not been plotted for the sake of brevity).
On the other hand, it can be observed that X

op
1 is mainly produced by the contribution of mass m2 in the

non-resonant zone.
A similar analysis can be performed for the displacements of masses m2, m3 and m4. In Fig. 6b it can be

seen, as expected, that only masses m1 and m4 contribute to the overall displacement, X
op
2 , of mass m2. In the

non-resonant zone, the displacement is wholly due to the contribution of mass m4 (remind that m4 is the mass
where the external operational force is being applied). In Fig. 6c a very close situation is observed. The
displacement, X

op
3 , of m3 has only contributions from masses m1 and m4 and in the non-resonant zone the

displacement level is plenty produced by the sole contribution of m4. Finally, in Fig. 6d we present the results
for mass m4 that will have contributions from m2, m3 and from the external force acting on it. It can be
observed that the latter, X

0op
4 , fully accounts for the displacement level in the non-resonant frequency range.

The possibility of blocking some paths in order to diminish the displacement of mass m1 is next considered.
As commented and seen from Fig. 6a, X

op
1 is almost wholly produced by the vibration of m2 in the
Table 1

Mass, stiffness and damping values used in the numerical example.

Mass ðkgÞ Stiffness ðNm�1Þ Damping ðkg s�1Þ

m1 2.5 kg1 30 cg1 0:01
m2 1.5 k12 50 c12 0:01
m3 1.1 k24 50 c24 0:01
m4 2.5 k13 25 c13 0:1

k34 15 c34 0:1
kg4 23 cg4 0:01
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Fig. 5. (a) TD
11 continuous, TG

11 dashed, (b) TD
23 continuous, TG

23 dashed, (c) TD
13 continuous, TG

13 dashed, (d) TD
42 continuous, TG

42 dashed.
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non-resonant range. Hence, the two possibilities of making TD
21X

op
2 ¼ 0 analysed in Section 5 have been

simulated. First, the results of performing a mass blocking by setting to zero the displacement of mass m2

(Xop
2 ¼ 0) will be presented and, second, the results of removing the spring k12 and damper c12 ðT

D
21 ¼ 0Þ will

be shown.
The results of the factorisation for the mass blocked modified system, Eq. (32), are given in Fig. 7.

Remember from Section 5.1 that this situation corresponds to a 3 dof system because X
op
2 ¼ 0 (see Fig. 2). In

Fig. 7a the operational displacement of mass m1 is plotted. Taking into account that there is no external force
acting on this mass and that m1 is only directly connected to m3, it follows that the m1 displacement will be

entirely due to the contribution of m3, i.e., eX op

1 ¼
eTD

31
eX op

3 . On the other hand, in Fig. 7b the results for the

operational displacement of mass m3, eXop

3 are shown. This displacement will have contributions from m1 and

m4 although it can be observed that the latter fully produces the m3 displacement in the non-resonant
frequency range. In Fig. 7c the results for m4 are provided. In this case the contributions are from the
operational external force acting on m4 and from mass m3. The former, eX 0op4 , wholly accounts for the
displacement level in the non-resonant zone.
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The results of the factorisation when spring k12 and damper c12 are removed, Eq. (40), are presented in
Fig. 8. The results for the operational displacement of mass m1 can be seen in Fig. 8a. Given that this mass is

now only connected to m3 (see Fig. 3) it follows that bX op

1 ¼
bTD

31
bX op

3 . Similarly, mass m2 is only connected to

mass m4 so it will happen that bXop

2 ¼
bTD

42
bXop

4 (see Fig. 8b). The displacement of mass m3 involves a

contribution from m1 and another one from m4. Again, the latter is fully dominant for the non-resonant
frequency range. In Fig. 8d, the operational displacement of mass m4, bX op

4 , is given. In this case, contributions

arise from masses m2, m3 and from the external operational force acting on m4, bX 0op4 . The later clearly

produces the whole displacement level in the non-resonant zone.
Finally, in Fig. 9 a comparison of the various mass operational displacements for the three analysed

mechanical systems is presented: the original one, the new mass blocked system and the new system with
removed elements. Observing Fig. 9a it can be realised that the objective of reducing the original m1

operational displacement, X
op
1 , has been achieved in the non-resonant frequency range. Both methods of path

disconnecting yield almost identical displacement reductions at this zone. On the contrary, the situation
becomes clearly different in the resonant domain. This is so because the modified systems have different
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Fig. 7. Blocked mass system. (a) eXop

1 ¼
eTD

31
eXop

3 continuous; (b) eXop

3 dotted, eTD

13
eXop

1 continuous, eTD

43
eXop

4 dash-dotted; (c) eXop

4 dash-dotted,eTD

34
eXop

3 dotted, eX 0op4 �-shape.

O. Guasch / Journal of Sound and Vibration 321 (2009) 854–874 869
boundary conditions and hence different eigenfrequencies. Consequently, at some frequencies eX op

1 and bXop

1

become lower than the original one, X
op
1 , but at other frequencies the opposite occurs.

In Fig. 9b the results for mass m2 have been plotted. This mass has been the one fixed in the new blocked
mass system so eX op

2 ¼ 0. In what concerns the new system with removed elements, its displacement bX op

2 differs
from the displacement X

op
2 of the original system in the resonant frequency range, for the reasons explained

above, but remains almost unaltered in the non-resonant domain. The results in Fig. 9c correspond to mass m3

and show similar behaviour. Both, bXop

3 and eXop

3 , do not present significant differences from X
op
3 in the non-

resonant frequency range. The same holds true for the displacement of the mass m4 (see Fig. 9d), which again
is unaffected by the system modifications in the non-resonant domain.

In summary, it has been shown that either by using the mass blocking technique or by
removing some system elements, it is possible to reduce the displacement level of m1 in the non-resonant
frequency range. Moreover, this does not result in a significant variation of the displacements of the
masses m2, m3 and m4. In what concerns the resonant frequency range no general tendency can be
clearly inferred. However, the above type of analysis could be used to eliminate annoying resonant
behaviour at particular frequencies and to predict where the new ones, corresponding to the modified system,
will appear.



ARTICLE IN PRESS

0 1 2 3 4 5
−120

−100

−80

−60

−40

−20

0

20

40

Frequency [Hz]
0 1 2 3 4 5

−120

−100

−80

−60

−40

−20

0

20

40

Frequency [Hz]

0 1 2 3 4 5
−120

−100

−80

−60

−40

−20

0

20

40

Frequency [Hz]
0 1 2 3 4 5

−120

−100

−80

−60

−40

−20

0

20

40

Frequency [Hz]

20
lo

g 1
0(

IT
D ijx

jop
I) 

[d
B

]

20
lo

g 1
0(

IT
D ijx

jop
I) 

[d
B

]
20

lo
g 1

0(
IT

D ijx
jop

I) 
[d

B
]

20
lo

g 1
0(

IT
D ijx

jop
I) 

[d
B

]

Fig. 8. Removed complex stiffness system. (a) bXop

1 ¼
bTD

31
bXop

3 continuous; (b) bXop

2 ¼
bTD

42
bXop

4 dashed; (c) bXop

3 dotted, bTD

13
bXop

1 continuous,bTD

43
bXop

4 dash-dotted; (d) bXop

4 dash-dotted, bTD

24
bXop

2 dashed, bTD

34
bXop

3 dotted, bX 0op4 �-shape.

O. Guasch / Journal of Sound and Vibration 321 (2009) 854–874870
7. Conclusions

In this paper use has been made of a simple mechanical discrete system made of springs, dampers and
masses to analytically show some features of the global transfer direct transfer (GTDT) method of
transmission path analysis (TPA). It has been shown that the displacement of any system mass can be
factorised in terms of the displacements of the remaining masses plus the displacement due to the external
force acting on it. This factorisation among responses can be performed using very easily measurable
quantities, such as the displacement transfer functions among masses and the displacement operational vector.
None of this quantities needs any artificial mass blocking or removing any part of the system to be measured.
The GTDT approach may then constitute a non-intrusive alternative to covering techniques requiring
moreover, much less experimental effort.

The prediction capabilities of the method when blocking some transmission paths in the original mechanical
system have been also analysed. It has been shown that in some cases the GTDT approach retains full power
prediction but in others some extra measurements may be needed. Although it requires less experimental work
than the force TPA approach, the GTDT method postprocess is generally slightly more involved than the
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force TPA one. Despite the simplicity of the analysed 4 dof mechanical system, some general predictive
tendencies have been inferred. Further cases involving continuum systems as well as practical industrial
applications of the method are currently being explored.
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Appendix A. Dynamic compliance matrix

The elements of the dynamic compliance matrix, HSPR
ij , are next given. Note that the dynamic stiffness

matrix, ZSPR, is symmetric so HSPR ¼ ðZSPRÞ
�1 will be also symmetric.
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The HSPR diagonal elements are

HSPR
11 detZSPR ¼ � o6m2m3m4 þ o4½m4ðm2k3 þm3k2Þ þm2m3k4� þ o2½m2ðk

2

34 � k3k4Þ

þm3ðk
2

24 � k2k4Þ �m4k2k3� þ k2k3k4 � k2k
2

34 � k3k
2

24, (A.1)

HSPR
22 detZSPR ¼ � o6m1m3m4 þ o4½m3ðm4k1 þm1k4Þ þm1m4k3� þ o2½m1ðk

2

34 � k3k4Þ

þm4ðk
2

13 � k3k1Þ �m3k4k1� þ k3k1k4 � k1k
2

34 � k4k
2

13, (A.2)

HSPR
33 detZSPR ¼ � o6m1m2m4 þ o4½m2ðm4k1 þm1k4Þ þm1m4k2� þ o2½m1ðk

2

24 � k2k4Þ

þm4ðk
2

12 � k2k1Þ �m2k4k1� þ k2k1k4 � k1k
2

24 � k4k
2

12, (A.3)

HSPR
44 detZSPR ¼ � o6m2m3m1 þ o4½m1ðm2k3 þm3k2Þ þm2m3k1� þ o2½m2ðk

2

13 � k3k1Þ

þm3ðk
2

12 � k2k1Þ �m1k2k3� þ k2k3k1 � k2k
2

13 � k3k
2

12, (A.4)

while the off-diagonal terms are

HSPR
12 detZSPR ¼ HSPR

21 detZSPR ¼ o4m3m4k12 � o2k12ðm3k4 þm4k3Þ þ k12ðk3k4 � k
2

34Þ þ k13k24k34, (A.5)

HSPR
13 detZSPR ¼ HSPR

31 detZSPR ¼ o4m2m4k13 � o2k13ðm2k4 þm4k2Þ þ k13ðk2k4 � k
2

24Þ þ k12k24k34, (A.6)

HSPR
14 detZSPR ¼ HSPR

41 detZSPR ¼ �o2ðm2k13k34 þm3k12k24Þ þ k2k13k34 þ k3k12k34, (A.7)

HSPR
23 detZSPR ¼ HSPR

32 detZSPR ¼ �o2ðm1k24k34 þm4k12k13Þ þ k1k24k34 þ k4k12k13, (A.8)

HSPR
24 detZSPR ¼ HSPR

42 detZSPR ¼ o4m1m3k24 � o2k24ðm1k3 þm3k1Þ þ k24ðk3k1 � k
2

13Þ þ k12k13k34, (A.9)

HSPR
34 detZSPR ¼ HSPR

43 detZSPR ¼ o4m1m2k34 � o2k34ðm1k2 þm2k1Þ þ k34ðk2k1 � k
2

12Þ þ k12k13k24 (A.10)

and the determinant, detZSPR, is given by

det ZSPR ¼ o8m1m2m3m4 � o6ðm2m3m4k1 þm2m3m1k4 þm1m2m4k3 þm1m3m4k2Þ

þ o4½m1m2ðk3k4 � k
2

34Þ þm1m3ðk2k4 � k
2

24Þ þm2m4ðk3k1 � k
2

13Þ

þm3m4ðk2k1 � k
2

12Þ þm1m4k2k3 þm2m3k1k4� þ o2½m1ðk2k
2

34 þ k3k
2

24 � k2k3k4Þ

þm2ðk1k
2

34 þ k4k
2

13 � k3k1k4Þ þm3ðk1k
2

24 þ k4k
2

12 � k2k1k4Þ þm4ðk2k
2

13 þ k3k
2

12 � k2k3k1Þ�

þ ðk12k34 � k13k24Þ
2
þ k1k4k2k3 � k1ðk2k

2

34 þ k3k
2

24Þ � k4ðk2k
2

13 þ k3k
2

12Þ. (A.11)

The terms eHSPR

ii appearing in the direct transfer functions of the modified system in Eqs. (25), (27) and (28) are
given by

eHSPR

11 det eZSPR
¼ o4m3m4 � o2ðm3k4 þm4k3Þ þ k3k4 � k

2

34, (A.12)

eHSPR

22 det eZSPR
¼ ðo2m1 � k1Þðo2m4 � k4Þ, (A.13)

eHSPR

33 det eZSPR
¼ o4m1m3 � o2ðm1k3 þm3k1Þ þ k3k1 � k

2

13 (A.14)
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with

det eZSPR
¼ � o6m1m3m4 þ o4½m1ðm3k4 þm4k3Þ þm3m4k1� þ o2½m1ðk

2

34 � k3k4Þ þm4ðk
2

13 � k3k1Þ �m3k1k4�

þ k1k3k4 � k4k
2

13 � k1k
2

34. (A.15)

Appendix B. Connectivity and transmission paths

An elemental or direct path between two masses can be identified with its direct link. Path, P12, is
characterised by TD

12 while path P34 is characterised by TD
34. There is no elemental path connecting e.g., m4 and

m1 or m2 and m3. These masses are connected through the union of various elemental paths, which can be
termed as composed or global paths. For instance, m4 and m1 can be linked by P12 [ P24, P42 [ P21, P13 [ P34

or P43 [ P34.
From the above path definition it follows that different elemental transmission paths do not necessarily

correspond to disjoint sets of physical entities. For example, path P21 is characterised by TD
21, whose

expression, Eq. (14b), involves the masses, springs and dampers m1, k12, k13 and kg1. These physical elements
are also shared by the path P31, characterised by TD

31. Consequently, the presented path definition may be
viewed as a rather intricate way to define transmission paths as one may think that is by far more logical to
identify them with sets of physical elements, as done in common practice (see e.g., Ref. [1]). In fact, this may be
the case for finite discrete systems such as the simple 4 dof analysed system. However, it is also possible to
perform a path analysis between several dof in a single continuous mechanical system instead of a discrete one
(e.g., displacement and rotation among various points in a beam [12], acoustic pressure at various points in
free field space [13], etc.). In such cases, transmission paths can no longer be identified with physical entities,
while the above definition of transmission paths keeps full sense.
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[4] H.R. Tschudi, The force transmission path method: an interesting alternative concerning demounting tests, Unikeller Conference,

Vol. 91, 1991.

[5] S. Kim, A. Inoue, R. Singh, Experimental study of structure-borne noise transfer paths over mid frequency regime, SAE Noise and

Vibration Conference Paper No. 2005-01-2338, 2005.

[6] J. Plunt, Examples of using transfer path analysis together with CAE-models to diagnose and find solutions for NVH problems late in

the vehicle development process, SAE Int. Paper No. 2005-01-2508, 2005.

[7] A.N. Thite, D.J. Thompson, The quantification of structure-borne transmission paths by inverse methods. Part 1: improved singular

value rejection methods, Journal of Sound and Vibration 264 (2003) 411–431.

[8] A.N. Thite, D.J. Thompson, The quantification of structure-borne transmission paths by inverse methods. Part 2: use of

regularization techniques, Journal of Sound and Vibration 264 (2003) 433–451.

[9] F.X. Magrans, Direct transference applied to the study of room acoustics, Journal of Sound and Vibration 96 (1) (1984) 13–21.

[10] F.X. Magrans, Definition and calculation of transmission paths within a SEA framework, Journal of Sound and Vibration 165 (2)

(1993) 277–283.

[11] F. Bessac, L. Gagliardini, L. Guyader, Coupling eigenvalues and eigenvectors: a tool for investigating the vibroacoustic behaviour of

coupled vibrating systems, Journal of Sound and Vibration 191 (5) (1996) 881–899.

[12] O. Guasch, F.X. Magrans, The global transfer direct transfer method applied to a finite simply supported elastic beam, Journal of

Sound and Vibration 276 (1–2) (2004) 335–359.

[13] F.X. Magrans, O. Guasch, The role of the direct transfer matrix as a connectivity matrix and application to the Helmholtz equation

in 2D: relation to numerical methods and free field radiation example, Journal of Computational Acoustics 13 (2) (2005) 341–363.

[14] J.S. Mixson, J.F. Wilby, Interior noise, in: H.H. Hubbard (Ed.), Aeroacoustics of Flight Vehicles. Theory and Practice. Volume II:

Noise Control, Acoustical Society of America, 1995.

[15] J.S. Bendat, A.G. Piersol, Engineering Applications of Correlation and Spectral Analysis, Wiley, New York, 1980.



ARTICLE IN PRESS
O. Guasch / Journal of Sound and Vibration 321 (2009) 854–874874
[16] R. Potter, Matrix formulation of multiple and partial coherence, Journal of the Acoustical Society of America 61 (1977) 776–781.

[17] O. Guasch, F.X. Magrans, A compact formulation for conditioned spectral density function analysis by means of the LDLH matrix

factorisation, Journal of Sound and Vibration 277 (4–5) (2004) 1082–1092.

[18] M.H.A. Janssens, J.W. Verheij, A pseudo-forces methodology to be used in characterization of structure-borne sound sources,

Applied Acoustics 61 (3) (2000) 285–308.

[19] O. Guasch, Regularization and Resampling Methods to Improve the Accuracy of the Global Transfer Direct Transfer method of

transmission path analysis, ICR Technical Report No. 21-09/04, 2004.

[20] H.G. Choi, A.N. Thite, D.J. Thompson, Comparison of methods for parameter selection in Tikhonov regularization with application

to inverse force determination, Journal of Sound and Vibration 304 (2007) 894–917.

[21] F.X. Magrans, P.V. Rodriguez, G.C. Cousin, Low and mid-high frequency advanced transmission path analysis, Proceedings of the

Twelfth International Congress on Sound and Vibration ICSV12, Lisbon, Portugal, 2005.


	Direct transfer functions and path blocking in a discrete mechanical system
	Introduction
	Problem statement
	Equations of motion
	Easily measurable quantities: the global transfer matrix, T^G and the operational displacement vector, X^op

	The direct transfer matrix, T^D
	Obtaining T^D from T^G
	An alternative procedure to obtain T^D

	Factorisation under operational conditions
	Displacement of masses coherent factorisation
	A brief comment on the energetic factorisation

	Analytic analysis of path blocking
	Blocking the displacement of a mass
	Removing springs and dampers
	Discussion

	Numerical example
	Conclusions
	Acknowledgements
	Dynamic compliance matrix
	Connectivity and transmission paths
	References


